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The Laplace Transform*
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In this chapter, we illustrate the use of the Laplace transform in option pricing.
Using the Laplace transform method we can transform a PDE into an ordinary dif-
ferential equation (ODE) that in general is easier to solve. The solution of the PDE
can be then obtained inverting the Laplace transform. Unfortunately when we con-
sider interesting examples, such as pricing Asian options, usually it is difficult to
find an analytical expression for the inverse Laplace transform. Then the necessity
of the numerical inversion. For this reason, in this chapter we also discuss the prob-
lem of the numerical inversion, presenting the Fourier series algorithm that can be
easily implemented in MATLAB R© or VBA R©. The numerical inversion is often dis-
believed generically referring to its “intrinsic instability” or for “its inefficiency from
a computational point of view”. So the aim of this chapter is also to illustrate that
the numerical inversion is feasible, is accurate and is not computational intensive.
For these reasons, we believe that the Laplace transform instrument will gain greater
importance in the Finance field, as already happened in engineering and physics.

In Sect. 7.1 we define the Laplace transform and we give its main properties.
In Sect. 7.2, we illustrate the numerical inversion problem. Section 7.3 illustrates a
simple application to finance.

7.1 Definition and Properties

In this section we give the basic definition and the properties of the Laplace trans-
form. We say that a function F is of exponential order, if there exist some constants,
M and k, for which |F(τ)| ≤ Mekτ for all τ ≥ 0. The Laplace transform ̂F(γ ) of a
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214 7 The Laplace Transform

function F(τ) is defined by the following integral:

̂F(γ ) = L(F (τ)) =
∫ +∞

0
e−γ τF (τ) dτ (7.1)

where γ is a complex number and F(τ) is any function which, for some value of γ ,
makes the integral finite. The integral (7.1) then exists for a whole interval of values
of γ , so that the function ̂F(γ ) is defined. The integral converges in a right-plane
Re(γ ) > γ0 and diverges for Re(γ ) < γ0. The number γ0, which may be +∞ or
−∞, is called the abscissa of convergence.

Not every function of τ has a Laplace transform, because the defining integral
can fail to converge. For example, the functions 1/τ , exp(τ 2), tan(τ ) do not possess
Laplace transforms. A large class of functions that possess a Laplace transform are
of exponential order. Then the Laplace transform of F(τ) surely exists if the real part
of γ is greater than k. In this case, k coincides with the abscissa of convergence γ0.
Also there are certain functions that cannot be Laplace transforms, because they do
not satisfy the property ̂F(+∞) = 0, e.g. ̂F(γ ) = γ . An important fact is the
uniqueness of the representation (7.1), i.e. a function ̂F(γ ) cannot be the transform
of more than one continuous function F(τ). We have indeed:

Theorem 1 Let F(τ) be a continuous function, 0 < τ < ∞ and ̂F(γ ) ≡ 0, for
γ0 < Re(γ ) < ∞. Then we have F(τ) ≡ 0.

In Table 7.1 we give the most important properties of the Laplace transform. In
particular, we stress the linearity property

L
(

aF1(τ ) + bF2(τ )
) = aL(F1(τ )) + bL(F2(τ )),

and the Laplace transform of a derivative

L(∂τF (τ)) = γL(F (τ)) − F(0).

In Table 7.2 we give several examples of the Laplace transform ̂F(γ ) and the corre-
sponding function F(τ).

If the Laplace transform is known, the original function F(τ) can be recovered
using the inversion formula (Bromwich inversion formula), that can be represented
as an integral in the complex plane. We have the following result:

Theorem 2 If the Laplace transform of F(τ) exists and has abscissa of convergence
with real part γ0, then for τ > 0

F(τ) = L−1(̂F(γ )) = lim
R→∞

1

2πi

∫ a+iR

a−iR

̂F(γ )eτγ dγ,

where a is another real number such that a > γ0 and i is the imaginary unit, i =√−1.
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Table 7.1. Basic properties of the Laplace transform

Property Function Laplace transform

Definition F(τ) ̂F(γ ) = ∫ +∞
0 e−γ τ F (τ) dτ

Linearity aF1(τ ) + bF2(τ ) âF1(γ ) + b̂F2(γ )

Scale aF (aτ) ̂F(γ /a)

Shift eaτ F (τ) ̂F(γ − a)

Shift

{

F(τ − a), τ > a

0, τ < a
e−aγ

̂F(γ )

Time derivative ∂F (τ)
∂τ

γ ̂F(γ ) − F(τ)|τ=0

Differentiation ∂nF (τ)
∂τn γ n

̂F(γ ) − γ n−1F(0) + · · ·
− γ n−2F ′(0) − · · · − F(n−1)(0)

Integral
∫ τ

0 F(s) ds
̂F(γ )
γ

Multiplication τnF (τ) (−1)n ̂F(n)(γ )

by polynomials
Convolution

∫ τ
0 F(s)G(τ − s) ds ̂F(γ )̂G(γ )

Ratio of polynomials
∑n

k=1
P(αk)
Q′(αk)

eαkτ
∑n

k=1
P(γ )
Q(γ )

P (x) polynomial of degree < n; Q(x) = (x − a1)(x − a2) · · · (x − an)

where a1 
= a1 
= · · · 
= an

Final value limτ→∞ F(τ) limγ→0 γ ̂F(γ )

Initial value limτ→0 F(τ) limγ→∞ γ ̂F(γ )

Inversion limk→∞ 1
2πi

∫ a+ik
a−ik f (γ )eτγ dγ ̂F(γ )

where c is the real part of the rightmost singularity in the image
function

Table 7.2. Some Laplace transforms and their inverses. The function δ(t) is the delta-Dirac
function, the function Jn(x) is the Bessel function of the first kind and of order n, Erfc(x) is
the complementary error function, i.e. Erfc(x) = 2N(−√

2x), where N(x) is the cumulative
normal distribution

̂F(γ ) F (τ)

1 1 δ(τ )

2 e−aγ δ(τ − a)

3 1
γ 1

4 1
γ 2 τ

5 1
γ n , n > 0 τn−1

�(n)

6 1
(γ−a)n

, n > 0 τn−1eaτ

(n−1)!
7 1√

γ−a+b
eaτ ( 1√

πτ
− beb2τ Erfc(b

√
τ))

8 e−|a|√γ√
γ

e−a2/4τ√
πτ

9 e−|a|√γ ae−a2/4τ

2
√

πτ 3

10 e−a
√

γ√
γ (

√
γ+b)

eb(bτ+a) Erfc(b
√

τ + a
2
√

τ
)

11 e−a/γ

γ n+1 ( τ
a )n/2Jn(2

√
aτ)
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The real number a must be selected so that all the singularities of the image
function ̂F(γ ) are to the left of the vertical line γ = γ0. The integral in the complex
plane can be sometimes evaluated analytically using the Cauchy’s residue theorem.
But this goes beyond an elementary treatment of the Laplace transform and we refer
the reader to some textbooks on complex analysis, such as Churchill and Brown
(1989). Moreover, this analytical technique often fails and the Bromwich’s integral
must be integrated numerically.

7.2 Numerical Inversion

Aim of this section is to illustrate how simple and accurate can be the numerical
inversion of the Laplace transform. The general opinion that the inversion of the
Laplace transform is an ill-conditioned problem1,2 is due to one of the first tentatives
of inversion that reduce the inversion problem to the solution of an ill-conditioned
linear system. If we consider a quadrature formula for the integral defining the
Laplace transform, we get

̂F(γ ) =
n

∑

i=1

wie
−γ τi F (τi). (7.2)

Writing this equation for n different values of γ , where γ is supposed to be a real
number, we are left with an n×n linear system to be solved wrt the n unknown values
F(τi). Unfortunately, the solution of this linear system can change abruptly given lit-
tle changes in ̂F(γ ). The ill-conditioning of the above inversion method is common
to all numerical routines that try the inversion computing the Laplace transform only
for real values of the parameter γ . The exponential kernel that appears in the defini-
tion of the Laplace transform smooths out too much the original function. Therefore,
to recover F(τ) given values of the Laplace transform on the real axis can be very
difficult. This problem occurs when ̂F(γ ) is the result of some physical experiment,
so that it can be affected by measurement errors. Instead, this problem does not arise
when the Laplace transform is known in closed form as a complex function. In this
case instead of discretizing the integral defining the forward Laplace transform, we

1 The concept of well-posedness was introduced by Hadamard and, simply stated, it means
that a well-posed problem should have a solution, that this solution should be unique and
that it should depend continuously on the problem’s data. The first two requirements are
minimal requirements for a reasonable problem, and the last ensures that perturbations,
such errors in measurement, should not unduly affect the solution.

2 “The inversion of the Laplace transform is well known to be an ill-conditioned problem.
Numerical inversion is an unstable process and the difficulties often show up as being
highly sensitive to round-off errors”, Kwok and Barthez (1989). “The standard inversion
formula is a contour integral, not a calculable expression . . . . These methods provide con-
vergent sequences rather than formal algorithms; they are difficult to implement (many
involve solving large, ill-conditioned systems of linear equations or analytically obtaining
high-order derivatives of the transform) and none includes explicit, numerically computable
bounds on error and computational effort”, Platzman, Ammons and Bartholdi (1988).
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Fig. 7.1. Sample points for the inversion with the Fourier series method using the Bromwich
contour and sample points for the inversion on the real axis using the definition of Laplace
transform.

can operate the inversion using directly the Bromwich contour integral, and then
using values of the transform in the complex plane. The different approach of in-
verting the Laplace transform on the real axis or on the complex plane is illustrated
in Fig. 7.1. This section describe a very effective Laplace inversion algorithm that
involves complex calculations.3

Letting the contour be any vertical line γ = a such that ̂F(γ ) has no singularities
on or to the right of it, the original function F(τ) is given by the inversion formula:

F(τ) = 1

2πi

∫ a+i∞

a−i∞
eγ τ

̂F(γ ) dγ, τ > 0. (7.3)

Alternatively, setting a+iu = γ and using the identity from complex variable theory,
eγ = ea(cos(u) + i sin(u)), Re(̂F(a + iu)) = Re(̂F(a − iu)), Im(̂F(a + iu)) =
− Im(̂F(a − iu)), sin(uτ) = − sin(−uτ), cos(uτ) = cos(−uτ), and from the fact
that the integral in (7.3) is 0 for τ < 0, we get

F(τ) = 2eaτ

π

∫ +∞

0
Re

(

̂F(a + iu)
)

cos(uτ) du (7.4)

and

F(τ) = −2eaτ

π

∫ +∞

0
Im

(

̂F(a + iu)
)

sin(uτ) du.

F (τ) can be calculated from (7.4) by performing a numerical integration (quadra-
ture). Since there are many numerical integration algorithms, the remaining goal is

3 Certain computer languages such as Matlab R©, Mathematica, Fortran and C++ have auto-
matic provision for doing complex calculations. In VBA R© or C we need instead to define
a new type of variable and to say how operations between complex numbers must be per-
formed.
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to exploit the special structure of the integrand in (7.4) in order to calculate the inte-
gral accurately and efficiently.

The algorithm we describe is named Fourier series method and has received great
attention recently in finance, for the simplicity of implementation and the accuracy
in the numerical results. The underlying idea of the method is to discretize (7.4)
using the trapezoidal rule. Then the inversion is given as a sum of infinite terms. The
convergence of the series is accelerated using the Euler algorithm. This algorithm
allows one to compute a series with great accuracy using a limited number of terms
(in several examples founded in the literature no more than 30).

7.3 The Fourier Series Method

The Fourier series algorithm has been originally proposed by Dubner and Abate
(1968) and then improved by Abate and Whitt (1992b). It is essentially a trapezoidal
rule approximation to (7.4). An essential feature of this method is that an expres-
sion for the error in the computed inverse transform is available. Therefore, one can
control the maximum error in the inversion technique. Since the trapezoidal rule is
a quite simple integration procedure, its use can appear surprising. It turns out to
be surprisingly effective in this context with periodic and oscillating integrands, be-
cause the errors tend to cancel. In particular, it turns out to be better than familiar
alternatives such as Simpson’s rule or Gaussian quadrature for inversion integrals.

If we apply the trapezoidal rule with step size Δ to the expression in (7.4), we
get

F(τ) � F DA
Δ (τ) = Δeaτ

π
Re(̂F(a)) + 2Δeaτ

π

∞
∑

k=1

Re
(

̂F(a + ikΔ)
)

cos(kΔτ).

If we set Δ = π/(2τ) and a = A/(2τ), we can eliminate the cosine terms and
we obtain an alternating series

F DA
Δ (τ) = eA/2

2τ
Re

(

̂F

(

A

2τ

))

+ eA/2

τ

∞
∑

k=1

(−1)k Re

(

̂F

(

A + 2kπi

2τ

))

. (7.5)

The choice of A has to be made in such a way that a falls at the left of the
real part of all the singularities of the function ̂F(γ ) (a = 0 suffices when F is a
bounded continuous probability density). Assuming that |F(τ)| < M , Abate and
Whitt (1992b) show that the discretization error can be bounded by

∣

∣F(τ) − F DA
Δ (τ)

∣

∣ < M
e−A

1 − e−A
� Me−A, (7.6)

so that we should set A large in order to make the error small. In order to obtain a
discretization error less than 10−δ , we can set A = δ ln 10. However, increasing A

can make the inversion (7.5) harder, due to roundoff errors. Thus A should not be
chosen too large. In practice, Abate and Whitt (1992b) suggest to set A equal to 18.4.
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The remaining problem consists in computing the infinite sum in (7.5). If the
term Re(̂F((A + 2kπi)/(2τ))) has a constant sign for all k, it can be convenient
to consider an accelerating algorithm for alternating series. Abate and Whitt (1992b)
propose the use of the Euler algorithm. This algorithm consists in summing explicitly
the first n terms of the series and then in taking a weighted average of additional m

terms. In practice, the Euler algorithm estimates the series using E(τ ; n,m), where

F DA
Δ (τ) ≈ E(τ ; n,m) =

m
∑

k=0

(

m

k

)

2−msn+k(τ ), (7.7)

and where sn(τ ) is the nth partial sum:

sn(τ ) = eA/2

2τ
Re

(

̂F

(

A

2τ

))

+ eA/2

τ

n
∑

k=1

(−1)k Re

(

̂F

(

A + 2kπi

2τ

))

. (7.8)

As pointed out in Abate and Whitt (1992b, p. 46), in order for Euler summation
to be effective, ak = Re(̂F((A + 2kπi)/(2τ))) must have three properties for suffi-
ciently large k: (a) to be of constant sign, (b) to be monotone, (c) the higher-order
differences (−1)mΔman+k are monotone. On a practical side, these properties are
not checked, so that the algorithm is used in a heuristic way. Usually, E(τ ; n,m)

approximates the true sum with an error of the order of 10−13 or less with the choice
n = 38 and m = 11, i.e. using just 50 terms. The direct computation of the series can
require more than 10,000 terms. The Abate–Whitt algorithm gives excellent results
for functions that are sufficiently smooth (say, twice continuously differentiable).
However, the inversion algorithm performs less satisfactorily for points at which the
function f (t) or its derivative is not differentiable.

Example Let us test the algorithm with the series
∑+∞

k=1(−1)k/k, that converges to
− ln 2 = −0.6931471805599453. Computing the sum using 100,000 terms, we get
−0.6931421805849445, i.e. a five digits accuracy. Using the Euler algorithm with
n = 19 and n + m = 30, we get −0.693147180559311, i.e. a ten digits accuracy!
This is illustrated in Fig. 7.2.

The procedure for the numerical inversion is then resumed in Table 7.3.

7.4 Applications to Quantitative Finance

In this section we illustrate how the Laplace transform method can be useful in solv-
ing linear parabolic equations. We consider two examples: (a) pricing a call option
in the standard Black–Scholes model; (b) pricing an Asian option in the square-root
model.

7.4.1 Example

For this, let us consider the Black–Scholes PDE satisfied by the price F(τ,X) of a
derivative contract having time to maturity T − t
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Fig. 7.2. Euler algorithm for computing
∑∞

k=1
(−1)k

k
.

∂tF + rx∂xF + 1

2
σ 2x2∂xxF = rF, (7.9)

F(T , x) = φ(x),

and appropriate boundary conditions. Let us define

τ = σ 2

2
(T − t), z = ln x,

and let us introduce the new function

F(t, x) = f (τ, z).
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Table 7.3. Pseudo-code for implementing the numerical inversion of the Laplace transform

Define the Laplace Transform ̂F( A
2τ

)

Assign A, n, m

Compute sj in (7.8), j = 1, m + m.
Using sn, . . . , sn+m compute E(τ ;n, m)

Then f solves the PDE

−∂τ f (τ, z) +
(

r

σ 2/2
− 1

)

∂zf (τ, z) + ∂zzf (τ, z) − r

σ 2/2
f (τ, z) = 0, (7.10)

with initial condition f (0, z) = F(T , ez). In the following, we consider as payoff
function

f (0, z) = F
(

T , ez
) = (

ez − ek
)

+,

i.e. a plain vanilla option (and therefore f (τ, z) → ez − ek as z → +∞ and
f (τ, z) → 0 as z → −∞). If we Laplace transform the above partial differen-
tial equation with constant coefficients, the result will be an algebraic equation in
the transform of the unknown variable. Indeed, from the properties illustrated in Ta-
ble 7.1, we have

L(f (τ, z)) =
∫ ∞

0
e−γ τ f (τ, z) dτ = f̂ (γ, z),

L(∂τ f (τ, z)) =
∫ ∞

0
e−γ τ ∂τ f (τ, z) dτ = γ f̂ (γ, z) − f (0, z),

L(∂zf (τ, z)) =
∫ ∞

0
e−γ τ ∂zf (τ, z) dτ = ∂zf̂ (γ, z),

L(∂zzf (τ, z)) =
∫ ∞

0
e−γ τ ∂zzf (τ, z) dτ = ∂zzf̂ (γ, z).

Therefore, we have the means of turning the PDE (7.9), for the linearity of the
Laplace transform, into the second-order ordinary differential equation (ODE):

−(

γ f̂ (γ, z) − (

ez − ek
)

+
) +

(

r

σ 2/2
− 1

)

∂zf̂ (γ, z)

+ ∂zzf̂ (γ, z) − r

σ 2/2
f̂ (γ, z) = 0.

Then setting m = r/(σ 2/2) we get

∂zzf̂ (γ, z) + (m − 1)∂zf̂ (γ, z) − (m + γ )f̂ (γ, z) + (

ez − ek
)

+ = 0 (7.11)

with boundary conditions given by the Laplace transform of the boundary conditions
of the original PDE:
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Table 7.4. Laplace transform and PDE

Original space

{ PDE
+IC

+BC’s

}

Solution

↗↖
analytical numerical

↓ ↖↗
L-transform L−1-transform

↓ ↑
Image space

{

ODE
+BC’s

}

→ Solution

f̂ (γ, z) → L
(

ez − e−mτ ek
) = ez

γ
− ek

γ + m
as z → +∞, (7.12)

f̂ (γ, z) → L(0) = 0 as z → −∞. (7.13)

The initial condition of the PDE has been included in the ODE, where now there
is the appearance of the term (ez − ek)+. Therefore, instead of solving the PDE
(7.10) we are left with the second-order differential equation in (7.11), that actually
is simpler to solve. Then, the problem will be to recover the solution of the PDE from
the solution of the ODE, i.e. to find the inverse Laplace transform. The procedure is
illustrated in Table 7.4.

In order to solve (7.11), let us define

f̂ (γ, z) = exp(αz)ĝ(γ, z),

where α = (1 − m)/2. Then ĝ(γ, z) solves

∂zzĝ(γ, z) − (b + γ )ĝ + e−αz
(

ez − ek
)

+ = 0,

with b = α2 + m = (m − 1)2/4 + m. We can solve this ODE separately in the two
regions z > k and z ≤ k to get

ĝ(γ, z) =
{

e−(α−1)z

γ
− e−αz+k

γ+m
+ h1(γ, z)A1 + h2(γ, z)A2, z > k,

h1(γ, z)B1 + h2(γ, z)B2, z ≤ k,

where
h1(γ, z) = e−√

b+γ z, h2(γ, z) = e+√
b+γ z.

Here A1, A2, B1 and B2 are constants to be determined according to the boundary
conditions (7.12) and (7.13) and requiring that f̂ (γ, z) is continuous and differen-
tiable at z = k (smooth pasting conditions). We observe that the singularities of
ĝ(γ, z) are 0, −m and −b. Therefore the abscissa of convergence of ĝ(γ, z) is given
by

γ0 = max(0,−m,−b).

Given that when γ > γ0, limz→+∞ eαzh1(γ, z) = 0 and limz→+∞ eαzh2(γ, z) =
∞, we must set A2 = 0. Similarly, when z < k we need to set B1 = 0. We are
therefore left with
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ĝ(γ, z) =
{

e−(α−1)z

γ
− e−αz+k

γ+m
+ h1(γ, z)A1, z > k,

h2(γ, z)B2, z ≤ k,

and now we determine A1 and B2 with the additional conditions

lim
z→k+ f̂ (γ, z) = lim

z→k− f̂ (γ, z),

lim
z→k+ ∂zf̂ (γ, z) = lim

z→k− ∂zf̂ (γ, z).

With some tedious algebra, we get

A1(γ ) = e(1−a+√
b+γ )k(γ − (a − 1 + √

b + γ )m)

2γ
√

b + γ (γ + m)
,

B2(γ ) = e(1−a−√
b+γ )k(γ − (a − 1 − √

b + γ )m)

2γ
√

b + γ (γ + m)
,

and finally we obtain the following expression for the function f̂ (γ, z)

f̂ (γ, z) = eaz

[(

e−(α−1)z

γ
− e−αz+k

γ + m

)

1(z>k)

+ e−√
b+γ |z−k|+(1−a)k(γ − (a − 1 + √

b + γ sgn(z − k))m)

2γ
√

b + γ (γ + m)

]

,

(7.14)

where sgn(z) = 1(z≥0) − 1(z<0).
We can also easily obtain the Laplace transform of the Delta and the Gamma of

the option differentiating with respect to x = ez the Laplace transform.

Numerical Inversion

The numerical inversion has been implemented in MATLAB R© and in VBA R©. In
MATLAB R©, we have built the following functions

function [lt] = ltbs(spot, strike, sg, rf, gamma)
function [euler] = AWBS(spot, strike, expiry, sg, rf,

aa, terms, extraterms)
The function ltbsm returns the Laplace transform in (7.14), taking as inputs the

spot price (spot), the strike (strike), the volatility (sg), the risk-free rate (rf)
and the Laplace parameter γ (gamma). The function AWBS performs the numerical
inversion (Fourier series with Euler summation) returning the Black–Scholes price.
The parameter aa is the constant A that determines the discretization error in (7.6),
terms is the number of terms n we use to estimate sn, and extraterms is the
additional number of terms m needed to perform the Euler summation. Similar func-
tions have been constructed in VBA R© for Excel. Here below, we give the Matlab R©
code.
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function [optprice] = AWBS(spot, strike, expiry, sg,
rf, aa, terms, extraterms)

tau = expiry * sg * sg / 2;
sum = 0;
%%compute the LT at gamma = aa / (2 * tau)
lt = ltbs(spot, strike, sg, rf, aa / (2 * tau));
sum = lt* exp(aa / 2) / (2 * tau);
%apply the Euler algorithm
k = [1:terms + extraterms];
arg = aa / (2 * tau)+i*pi.*k / tau;
term = ((-1) .ˆk) .* ltbs(spot, strike, sg, rf, arg)

* exp(aa / 2) / tau;
csum = sum+cumsum(term);
sumr = real(csum(terms:terms+extraterms));
j=[0:extraterms];
bincoeff = gamma(extraterms+1)./(gamma(j+1).

* gamma(extraterms-j+1));
%extrapolated result
optprice = (bincoeff*sumr’)*(2) ˆ(-extraterms);

function [lt] = ltbs(spot, strike, sg, rf, gamma)
m = 2 * rf / (sg * sg); a = (1 - m) / 2; b = a ˆ2 + m;
z = log(spot); k = log(strike);
%%%FORMULA 14: NUMERATOR
term0 = (b+gamma).ˆ0.5;
%’the numerator
if spot >strike
term1 = term0;
else
term1 = -term0;
end
term1 = a - 1+term1;
term1 = m*term1;
num = gamma-term1;
%’the denominator
den = 2.*gamma .* term0.*(m+gamma);
%’the exponential term
term2 = exp(k*(1-a)-term0*abs(z-k));
result = term2.*num./ den;
if spot > strike
%’exp(-(a-1)*z)/gamma
cterm1 = exp(-(a - 1) * z)./gamma;
%’exp(-a*z+k)/(gamma+m)
cterm2 = exp(-a * z + k)./(gamma +m);
%’A1*h1
result = cterm1-cterm2+result;
end
lt = exp(a * z).*result;
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Table 7.5. Pricing of a call option: analytical Black–Scholes (3rd column) and numerical
inversion of the Laplace transform (4th and 5th columns). Parameters: strike = 100, r = 0.05,
σ = 0.2

Expiry Spot BS A = 18.4, n = 15, m = 10 A = 18.4, n = 50, m = 10
0.001 90 0.00000 0.00000 0.00000
0.001 100 0.254814 0.254814 0.254814
0.001 110 10.00500 10.00500 10.00500
0.5 90 2.349428 2.349428 2.349428
0.5 100 6.888729 6.888729 6.888729
0.5 110 14.075384 14.075384 14.075384
1 90 5.091222 5.091222 5.091222
1 100 10.450584 10.450584 10.450584
1 110 17.662954 17.662954 17.662954
5 90 21.667727 21.667727 21.667727
5 100 29.13862 29.13862 29.13862
5 110 37.269127 37.269128 37.269128

20 90 57.235426 57.235426 57.235427
20 100 66.575748 66.575748 66.575749
20 110 76.048090 76.048090 76.048091

m.s.e. 0.00000147 0.00000203

In Table 7.5 we report the exact Black–Scholes price and the one obtained by nu-
merical inversion. The numbers in Table 7.5 can be obtained running the MATLAB R©
module main.

7.4.2 Example

As a second example, we consider the use of the Laplace transform with respect
to the strike and not with respect to the time to maturity. This different approach is
possible when the moment generating function (m.g.f.) of the underlying variable is
known in closed form. The m.g.f. of a random variable Z is defined as E0[e−γZ]. In
particular, if Z is a non-negative r.v. and admits density fZ(z), we have

E0
[

e−γZ
] =

∫ +∞

0
e−γ zfZ(z) dz,

and hence the interpretation of the m.g.f. as Laplace transform of the density func-
tion. Notice that the existence of the m.g.f. is not always guaranteed because it is
required that the m.g.f. is defined in a complete neighborhood of the origin. For ex-
ample, this is not the case when Z is lognormal.

If the m.g.f. of the random variable Z is known, we can also obtain the Laplace
transform of a call option written on Z(t). Let us consider a contingent claim with
payoff given by α(Z(t) − Y)+, where α and Y are constants. By no-arbitrage argu-
ments, the option price is:
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C
(

Z(0), t, Y
) = αe−rt

∫ +∞

0
(z − Y)+fZ(z) dz

= αe−rt

∫ +∞

Y

(z − Y)fZ(z) dz, (7.15)

where fZ(z) is the risk-neutral density of Z(t). Let us define the Laplace transform
wrt Z of the above price

c
(

Z(0), t; γ
) = L

[

C
(

Z(0), t, Y
)] =

∫ +∞

0
e−γ Y C

(

Z(0), t, Y
)

dY.

Replacing (7.15) in this formula and using a change of integration, we get

c
(

Z(0), t; γ
) = αe−rt

∫ +∞

0
e−γ Y

∫ +∞

x

(z − Y)fZ(z) dz dY

= αe−rt

∫ +∞

0

(∫ z

0
e−γ Y (z − Y) dY

)

fZ(z) dz

= αe−rt

∫ +∞

0

(∫ z

0

(

ze−γ Y − Y e−γ Y
)

dY

)

fZ(z) dz

= αe−rt

∫ +∞

0

e−γ z + γ z − 1

γ 2
fZ(z) dz

= αe−rt

(

E0[e−γZ(t)]
γ 2

+ E0[Z(t)]
γ

− 1

γ 2

)

.

Using the fact that the Laplace inverse of 1/γ is 1 and the Laplace inverse of 1/γ 2

is Y , we can write the option price as follows

C
(

Z(0), t, Y
) = αe−rt

(

L−1
(

E0[e−γZt ]
γ 2

)

+ E0[Zt ] − Y

)

, (7.16)

and the pricing problem is reduced to the numerical inversion of E0[e−γZt ]/γ 2.
As a concrete example, let us consider the square root process

dX(t) = rX(t) dt + σ
√

X(t) dW(t),

and our aim is to price a fixed strike Asian call option, having payoff

1

t

(∫ t

0
X(u) du − Kt

)

+
.

In order to obtain the price of the Asian option, we compute the moment gener-
ating function of

∫ t

0 X(u) du:

v
(

X(0), t; γ
) = E0

[

e−γ
∫ t

0 X(u) du
]

. (7.17)



7.4 Applications to Quantitative Finance 227

By the Feynman–Kac theorem, v(X(0), t; γ ) is the solution of the PDE:

−∂tv + rx ∂xv + 1

2
σ 2x ∂xxv = γ xv

with initial condition
v
(

X(0), 0; γ
) = 1.

To solve this PDE, we exploit the linearity of the drift and variance coefficients
and, following Ingersoll (1986), pp. 397–398, we consider a solution of the type:

v(X, t; γ ) = e−A(t; γ )X−B(t;γ ).

Replacing this function in the PDE, it is then easy to show that B(t; γ ) = 0 and

A(t; γ ) = 2γ (exp(tλ) − 1)

λ + r + (λ − r) exp(tλ)
, (7.18)

where λ = √

r2 + 2γ σ 2. Therefore, using (7.16), we can write the price of the Asian
option as

αe−rt

(

L−1
(

e−A(t;γ )X−B(t;γ )

γ 2

)

+ E0

[∫ t

0
X(u) du

]

− X

)

,

where L−1 is the Laplace inverse. In particular, we have:

E0

[∫ t

0
X(u) du

]

=
∫ t

0
E0[X(u)] du

=
∫ t

0
X(0)eru du

= X(0)
ert − 1

r
.

Numerical inversion

Table 7.6 provides some numerical example. In the numerical inversion of the
Laplace transform we have used A = 18.4, and the Euler algorithm has been ap-
plied using a total of 20 + 10 terms.

Table 7.6. Prices of an Asian option in the square-root model

K σ = 0.1 σ = 0.3 σ = 0.5
0.9 0.137345 0.15384 0.18691
0.95 0.09294 0.12001 0.15821
1 0.05258 0.09075 0.13253
1.05 0.02268 0.06640 0.10987
1.1 0.00687 0.04696 0.09016
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These examples have been obtained writing the Matlab R© functions
AWSR(spot, strike, expiry, sg, rf, aa, terms,

extraterms)
ltsr(spot, expiry, sg, rf, gamma)

The function AWSR performs the numerical inversion of the Laplace transform
according to the Abate–Whitt algorithm. The function ltsr returns the quantity
v(X, t; γ )/γ 2. The complete code is given here below.

function [optprice]=AWSR(spot, strike, expiry, sg, rf,
aa, terms, extraterms)

X = strike*expiry;
sum = 0;
%%compute the LT at gamma = aa / (2 * strike)
lt = ltsr(spot , expiry , sg , rf , aa / (2 * X) );
sum = lt* exp(aa / 2) / (2 * strike);
%apply the Euler algorithm
k = [1:terms + extraterms];
arg = aa / (2 * X)+i*pi.*k / X;
term = ((-1) .ˆk) .* ltsr(spot, expiry, sg, rf, arg)

* exp(aa / 2) / X;
csum = sum+cumsum(term);
sumr = real(csum(terms:terms+extraterms));
j = [0:extraterms];
bincoeff = gamma(extraterms+1)./(gamma(j+1).

* gamma(extraterms-j+1));
%extrapolated result
euler = (bincoeff*sumr’)*(2) ˆ(-extraterms);
%apply the final formula
optprice = exp(-rf*expiry)*(euler+spot*(exp(rf*expiry)

-1)/rf - X)/expiry;

function [lt] = ltsr(spot, expiry, sg, rf, gamma)
lambda = sqrt(rfˆ2+2*gamma*sg*sg);
numerator = 2*gamma.*(exp(expiry.*lambda)-1);
denominator = lambda+rf+(lambda-rf).*exp(expiry.

*lambda);
lt = exp(-spot*numerator./denominator)./gamma.ˆ2;

7.5 Comments

A good introduction to the Laplace transform topic can be found in Dyke (1999),
whilst a classical but more advanced treatment is Doetsch (1970). Extensive ta-
bles for analytical inversion of the Laplace transform are available: see for exam-
ple Abramowitz and Stegun (1965). Davies and Martin (1970) provide a review and
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a comparison of some numerical inversion available through 1979. More recently
Duffy (1993) compares three popular methods to numerically invert the Laplace
transform. The methods examined in Duffy are (a) the Crump inversion method,
Crump (1970); (b) the Weeks method that integrates the Bromwich’s integral by
using Laguerre polynomials, Weeks (1966); (c) the Talbot method that deforms the
Bromwich’s contour so that it begins and ends in the third and second quadrant of the
γ -plane, Talbot (1979). If the locations of the singularities are known, these schemes
may provide accurate results at minimal computational expense. However, the user
must provide a numerical value for some parameters and therefore an automatic in-
version procedure is not possible. At this regard, a recent paper by Weideman (1999)
seems to give more insights about the choice of the free parameters. Another sim-
ple algorithm to invert Laplace transforms is given in Den Iseger (2006). In general
this algorithm outperforms the Abate–Whitt algorithm in stability and accuracy. The
strength of the Den Iseger algorithm is the fact that in essence it boils down to an
application of the discrete FFT algorithm. However, the Den Iseger algorithm may
also perform unsatisfactorily when the function or its derivative has discontinuities.
Other interesting numerical inversion algorithms can be found in Abate, Choudhury
and Whitt (1996), Garbow et al. (1988a, 1988b). Finally, we mention the often quoted
Gaver–Stehefest algorithm, Gaver, Jr. (1966) and Stehfest (1970), a relatively simple
numerical inversion method using only values of the Laplace transform on the real
axis but requiring high precision.4

The numerical inversion of multidimensional Laplace transforms is studied in
Abate, Choudhury and Whitt (1998), Choudhury, Lucantoni and Whitt (1994), Sing-
hal and Vlach (1975), Singhal, Vlach and Vlach (1975), Vlach and Singhal (1993),
Chpt. 10, Moorthy (1995a, 1995b). Among the others, papers that discuss the insta-
bility of the numerical inversion are Bellman, Kalaba and Lockett (1966), Platzman,
Ammons and Bartholdi (1988), Kwok and Barthez (1989), Craig and Thompson
(1994). An useful source for the solution of ordinary differential equations is Ince
(1964).

Selby (1983) and Buser (1986) have introduced the Laplace transform in fi-
nance. Useful references are Shimko (1991) and Fusai (2001), that have lots of ex-
amples on which to practice. Laplace transform has been used in finance for pric-
ing (a) barrier options, Geman and Yor (1996), Pelsser (2000), and Sbuelz (1999,
2005), Davydov and Linetsky (2001a, 2001b); (b) interest rate derivatives, Leblanc
and Scaillet (1998) and Cathcart (1998); (c) Asian options, Geman and Yor (1993),
Geman and Eydeland (1995), Fu, Madan and Wang (1998), Lipton (1999), and Fusai
(2004); (d) other exotic options (corridor, quantile, parisian and step options), Aka-
hori (1995), Ballotta (2001), Ballotta and Kyprianou (2001), Chesney et al. (1995),
Chesney et al. (1997), Dassios (1995), Hugonnier (1999), Linetsky (1999), Fusai
(2000), Fusai and Tagliani (2001); (e) credit risk, Di Graziano and Rogers (2005);
(f) options on hedge funds, Atlan, Geman and Yor (2005). A review can be found
in Craddock, Heath and Platen (2000). Useful formulae related to the Laplace trans-

4 A Matlab R© implementation can be found at http://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectId=9987&objectType=file
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form of the hitting time distribution and to exponential functionals of the Brownian
motion can be found in Yor (1991), Rogers (2000), Borodin and Salminen (2002),
Salminen and Wallin (2005).

Finally, we mention the web page mantained by Valko,5 a useful reference for
finding the most important algorithms for the numerical inversion of the Laplace
transform.

5 http://pumpjack.tamu.edu/valko/public_html/Nil/index.html


